Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 39: 1-7, may. 2019. graf
Article in English | LILACS | ID: biblio-1051553

ABSTRACT

BACKGROUND: Juglone is a naphthoquinone currently obtained by chemical synthesis with biological activities including antitumor activity. Additionally, juglone is present in the green husk of walnut, which suggests evaluating the effect of GH extracts on carcinogenic cell lines. RESULTS: Walnut green husk ethanolic extract was obtained as 169.1 mg juglone/100 g Green Husk and antioxidant activity (ORAC) of 44,920 µmol Trolox Equivalent/100 g DW Green Husk. At 1 µM juglone in HL-60 cell culture, green husk extract showed an antiproliferative effect, but pure juglone did not; under these conditions, normal fibroblast cells were not affected. A dose-dependent effect on mitochondrial membrane potential loss was observed. Apoptosis of HL-60 was detected at 10 µM juglone. Despite high ORAC values, neither purified juglone nor the extract showed protective effects on HL-60 cells under oxidative conditions. CONCLUSIONS: Green husk extract generates an antiproliferative effect in HL-60 cells, which is related to an induction of the early stages of apoptosis and a loss of mitochondrial membrane potential. The normal cells were not affected when juglone is present at concentrations of 1 µM, while at higher concentrations, there is loss of viability of both cancerous and healthy cells.


Subject(s)
Apoptosis , HL-60 Cells/metabolism , Juglans/chemistry , Polyphenols/metabolism , Antioxidants/metabolism , Cell Survival , Chromatography, High Pressure Liquid , Cell Culture Techniques , Membrane Potential, Mitochondrial
2.
Experimental & Molecular Medicine ; : 174-178, 1999.
Article in English | WPRIM | ID: wpr-158709

ABSTRACT

Tanshinone II-A is a derivative of phenanthrene-quinone isolated from Salvia miltiorrhiza BUNGE, a traditional herbal medicine that is known to induce antiinflammatory, anti-oxidative and cytotoxic activity. We have examined cellular effects of Tanshione II-A on HL60 human promyelocytic leukemic cells and K562 human erythroleukemic cells. Tanshione II-A induced a dose- and time-dependent DNA fragmentation into the multiples of 180 bp and specific proteolytic cleavage of poly(ADP-ribose) polymerase in both cell lines. PI-staining and flow cytometry analysis of K562 cells following Tanshione II-A treatment showed an increase of the cells possessing hypodiploid DNA indicative of apoptotic state of cells. Caspase-3 activity was significantly increased during Tanshinone II-A treatment of both HL60 and K562 cells, whereas caspase-1 activity was not changed. These results suggest that Tanshione II-A induced HL60 and K562 cellular apoptosis that may be associated with the selective members of caspase family. Copyright 2000 Academic Press.


Subject(s)
Humans , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Apoptosis/physiology , Caspases/metabolism , Caspases/drug effects , Cell Cycle/drug effects , DNA Fragmentation/drug effects , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Enzyme Activation/drug effects , HL-60 Cells/pathology , HL-60 Cells/metabolism , HL-60 Cells/drug effects , Lamiaceae/chemistry , Leukemia/pathology , Leukemia/metabolism , Leukemia/drug therapy , Leukemia, Erythroblastic, Acute/pathology , Leukemia, Erythroblastic, Acute/metabolism , Leukemia, Erythroblastic, Acute/drug therapy , Phenanthrenes/pharmacology , Phenanthrenes/chemistry , Tumor Cells, Cultured
3.
Yonsei Medical Journal ; : 473-479, 1995.
Article in English | WPRIM | ID: wpr-99291

ABSTRACT

The nature of the endonucleases responsible for DNA fragmentation in apoptosis has not yet been clearly defined. The intracellular acidity has been known to greatly affect apoptosis probably by affecting the activity of the endonucleases. In this study, the implication of pH in the apoptosis was investigated through the use of human HL-60 leukemia cells. The cells were incubated in media with different pH ranging from 3.5 to 7.5 for 4 hrs and the mode of cell death was investigated. The trypan blue exclusion assay showed that close to 25% and 90% of the cells were dead when incubated in pH 6.4 and pH 5.0 media, respectively. The agarose gel electrophoresis of DNA demonstrated that significant DNA fragmentation occurred in the HL-60 cells incubated in the pH 6.2-6.4 media for 4 hr indicating cell death by apoptosis. The electron microscopy study also demonstrated that many of the cells incubated in the pH 6.4 medium were in the process of apoptosis while the cells maintained in the pH 5.0 medium were dying by necrosis. The intracellular pH (pHi) of HL-60 cells was 6.6-6.9 when the extracellular pH (pHe) was 6.2-6.4. These results demonstrated that DNase I which has a maximal endonuclease activity near pH 7.0 may be responsible for the apoptosis accompanied by DNA fragmentation in HL-60 cells in the pH 6.4 medium. This observation is at variance with the previous reports that DNase II mediate the DNA fragmentation in apoptosis. The cell death at extremely low pH (pH 5.0) appeared to be due mainly to necrosis.


Subject(s)
Humans , Apoptosis , DNA Damage , HL-60 Cells/metabolism , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL